Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Infect Drug Resist ; 17: 1099-1105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590553

RESUMO

Purpose: To explore the clinical characteristics, diagnosis, and treatment of family outbreak of psittacosis and to improve the success rate of treatment. Patients and Methods: The clinical characteristics, diagnosis, treatment, and outcome of family outbreak of psittacosis, which consists three patients, diagnosed by clinical analysis and metagenomic next-generation sequencing (mNGS) in our hospital were analyzed retrospectively. Results: We report on three instances of clustered atypical pneumonia, which were caused by Chlamydia psittaci during the COVID-19 pandemic. All patients exhibited symptoms of fever and cough, while one patient also experienced gastrointestinal symptoms such as nausea, vomiting, and diarrhea. Laboratory tests indicated no significant increase in leukocytes and neutrophils, but a mild increase in C-reactive protein was observed in all three patients. Chest computed tomography (CT) scans revealed a consolidation shadow in a unilateral lung lobe in all three patients. Both patients were treated with empirical moxifloxacin, yielding unsatisfactory outcomes. mNGS was conducted on sputum samples from one adult patient, revealing the presence of Chlamydia psittaci. Additional doxycycline was prescribed immediately, and then the patients' temperatures were stabilized, and the lesion in chest CT was absorbed. The pediatric patient exhibited less severe symptoms compared to the adult patients and exhibited a favorable response to azithromycin administration. Conclusion: This study reports a cluster of a family outbreak of atypical pneumonia caused by C. psittaci in China. The occurrence of a family outbreak during the COVID-19 pandemic may be attributed to familial aggregation resulting from the epidemic. The three cases reported in this study did not experience severe complications, which can be attributed to the prompt medical intervention and swift diagnosis. This finding implies the need to enhance patients' awareness and vigilance towards their health. Additionally, mNGS emerges as a valuable technique for accurately identifying pathogens causing pulmonary infections.

2.
Antimicrob Resist Infect Control ; 13(1): 28, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433212

RESUMO

BACKGROUND: Aeromonas hydrophila infections can cause gastrointestinal symptoms such as diarrhea; however, deep infections are rarely reported. Outbreaks of A. hydrophila are reported more frequently in fish, poultry, and snakes than in humans. This study aimed to track clonal relatedness of deep infections caused by A. hydrophila using whole genome sequencing (WGS). METHODS: We collected three isolates of A. hydrophila in July 19 to August 29, 2019, from patients that underwent spine surgery. Accurate species identification was performed using whole-genome average nucleotide identity (ANI). Antimicrobial susceptibility testing was performed using a VITEK 2 automated AST-N334 Gram-negative susceptibility card system. Antimicrobial resistance and virulence genes were identified using the Comprehensive Antibiotic Resistance Database and Virulence Factor Database VFanalyzer. RESULTS: All three isolates were identified as A. hydrophila based on ANI and multilocus sequence typing analysis revealed that A. hydrophila belonged to a novel sequence type (ST1172). All three isolates were susceptible to amikacin and levofloxacin; however, they were resistant to piperacillin/tazobactam, ceftriaxone, cefuroxime, cefoxitin, and imipenem. Isolate 19W05620 (patient 3) showed increased ceftazidime resistance (minimum inhibitory concentration ≥ 64 µg/mL). All three isolates possessed the same chromosomally encoded ß-lactamases, including blaOXA-724 (ß-lactamase), imiH (metallo-ß-lactamase), and blaMOX-13 (AmpC) in plasmids. CONCLUSIONS: Our study validated the transmission of a novel carbapenem-resistant A. hydrophila sequence type (ST1172) in patients that underwent spine surgery. Control measures should be developed to prevent dissemination of A. hydrophila in the hospital setting.


Assuntos
Aeromonas hydrophila , Anti-Infecciosos , Animais , Humanos , Aeromonas hydrophila/genética , Amicacina , Carbapenêmicos , beta-Lactamases
4.
Adv Sci (Weinh) ; 10(17): e2206056, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083223

RESUMO

Millions of adenosine (A) to inosine (I) RNA editing events are reported and well-studied in eukaryotes; however, many features and functions remain unclear in prokaryotes. By combining PacBio Sequel, Illumina whole-genome sequencing, and RNA Sequencing data of two Klebsiella pneumoniae strains with different virulence, a total of 13 RNA editing events are identified. The RNA editing event of badR is focused, which shows a significant difference in editing levels in the two K. pneumoniae strains and is predicted to be a transcription factor. A hard-coded Cys is mutated on DNA to simulate the effect of complete editing of badR. Transcriptome analysis identifies the cellular quorum sensing (QS) pathway as the most dramatic change, demonstrating the dynamic regulation of RNA editing on badR related to coordinated collective behavior. Indeed, a significant difference in autoinducer 2 activity and cell growth is detected when the cells reach the stationary phase. Additionally, the mutant strain shows significantly lower virulence than the WT strain in the Galleria mellonella infection model. Furthermore, RNA editing regulation of badR is highly conserved across K. pneumoniae strains. Overall, this work provides new insights into posttranscriptional regulation in bacteria.


Assuntos
Klebsiella pneumoniae , Percepção de Quorum , Virulência/genética , Klebsiella pneumoniae/genética , Percepção de Quorum/genética , Edição de RNA/genética , Sequenciamento Completo do Genoma
5.
Int J Antimicrob Agents ; 61(4): 106741, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736928

RESUMO

Ceftolozane/tazobactam (an antipseudomonal cephalosporin) in combination with a well-established ß-lactamase inhibitor has not been approved to date in clinical practice in China. The aim of this study was to evaluate the in-vitro activity of ceftolozane/tazobactam and comparator agents against Pseudomonas aeruginosa with various resistance patterns. P. aeruginosa (n=2178) specimens were collected from multiple sources in seven geographic regions of China between 2016 and 2019. All isolates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and minimum inhibitory concentrations of various antimicrobial agents (ceftolozane/tazobactam, amikacin, tobramycin, ceftazidime, cefepime, colistin, levofloxacin, aztreonam, meropenem, imipenem and piperacillin/tazobactam) were determined using the Clinical and Laboratory Standards Institute's broth microdilution method. P. aeruginosa demonstrated considerably high rates of multi-drug resistance (MDR, 57.3%), extensive drug resistance (XDR, 43.5%) and difficult-to-treat resistance (DTR, 16.8%). The overall susceptibility of P. aeruginosa to ceftolozane/tazobactam was 81.9%, and ceftolozane/tazobactam showed diverse activity against the three resistant subsets, ranging from 28.5% against DTR P. aeruginosa to 68.9% against MDR P. aeruginosa. P. aeruginosa, MDR P. aeruginosa, XDR P. aeruginosa and DTR P. aeruginosa derived from the East (Jiangzhe area) region maintained significantly lower susceptibility to ceftolozane/tazobactam compared with P. aeruginosa, MDR P. aeruginosa, XDR P. aeruginosa and DTR P. aeruginosa from other regions. The susceptibility rates of P. aeruginosa isolated from diverse sources to ceftolozane/tazobactam were similar to isolates from bloodstream infections, with the highest being 88.6%. Compared with other antimicrobial agents, ceftolozane/tazobactam was more active than the ß-lactams tested but was slightly less active than amikacin. Amikacin demonstrated the best activity against P. aeruginosa and the three resistant subsets. Ceftolozane/tazobactam demonstrated considerable in-vitro activity against P. aeruginosa, MDR P. aeruginosa, XDR P. aeruginosa and DTR P. aeruginosa, indicating that it could be an optional therapeutic agent against P. aeruginosa.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , Amicacina/farmacologia , Amicacina/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Farmacorresistência Bacteriana , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Tazobactam/farmacologia , Tazobactam/uso terapêutico , Inibidores de beta-Lactamases/uso terapêutico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
7.
Microbiol Spectr ; 10(6): e0263422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264236

RESUMO

The emergence of plasmids coharboring hypervirulence (Hv) and multidrug resistance (MDR) genes has further accelerated the spread of MDR-Hv Klebsiella pneumoniae (MDR-HvKP) strains, having a severe impact on public health. Here, we report an MDR-Hv superplasmid coharboring hypervirulence and MDR genes and the detailed characterization of its genetic and phenotypic features. This plasmid was identified in an ST11 (sequence type 11)-K64 carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) strain, SZS128, which was responsible for a bloodstream infection in a 21-year-old female. Susceptibility testing showed that SZS128 was resistant to amikacin, levofloxacin, and almost all of the ß-lactams examined. SZS128 showed high virulence in a Galleria mellonella survival assay and a mouse intraperitoneal infection model. Genomic analysis showed that SZS128 not only possessed a KPC plasmid (pSZS128-KPC) but also carried a superplasmid (pSZS128-Hv-MDR) coharboring hypervirulence and MDR genes and possessing complete conjugative regions. Conjugation and transformation assays confirmed the potential for horizontal transfer and the high stability (retention rate of >95%) of the pSZS128-Hv-MDR superplasmid. Furthermore, growth curve assessment confirmed that there was no increase in the fitness cost in the presence of pSZS128-Hv-MDR. Therefore, we define a superplasmid as a plasmid fulfilling all the following criteria: (i) a single plasmid that coharbors hypervirulence and MDR genes, (ii) a plasmid that harbors complete conjugative elements that guarantee self-transmissibility, (iii) a plasmid that is stable and conserved, and (iv) a plasmid with no fitness cost to the host strain. The emergence of this kind of superplasmid could represent a serious threat to public health, and urgent control measures must be implemented. IMPORTANCE This self-transmissible superplasmid, which simultaneously carries hypervirulence and MDR genes, greatly enhances the challenges to clinical prevention and control and anti-infection treatment. Thus, active surveillance of this type of superplasmid is needed to prevent these efficient resistance/virulence plasmids from disseminating in hospital settings. Our findings provide a reference for defining the term "superplasmid" and emphasize the importance of raising public awareness of the rapid dissemination of this self-transmissible superplasmid and the consistent emergence of MDR-HvKP strains.


Assuntos
Genes MDR , Infecções por Klebsiella , Feminino , Antibacterianos/farmacologia , beta-Lactamases/genética , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Plasmídeos/genética , Saúde Pública , Humanos , Adulto
8.
Front Microbiol ; 13: 1017488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274729

RESUMO

Objective: To investigate the bacterial distribution and antimicrobial resistance profile of clinical isolates from Gram-negative bacteria bloodstream infections (GNBSI) in China. Methods: The clinical bacterial strains isolated from blood culture were collected during April 2019 to December 2021 in 21 member hospitals of China Bloodstream Gram-negative Pathogens Antimicrobial Resistance and Virulence Surveillance Network (CARVIS-NET). Antibiotic susceptibility test was conducted by broth microdilution method recommended by Clinical and Laboratory Standards Institute (CLSI, United States). WHONET 2021 and SPSS 22.0 were used to analyze data. Results: During the study period, 1939 Gram-negative bacteria were collected from 21 hospitals, among which 1,724 (88.9%) were Enterobacteriaceae, 207 (10.7%) were non-fermenting Gram-negative bacteria and 8 (0.4%) were others. The top five bacterial species were Escherichia coli (46.2%), Klebsiella pneumoniae (31.6%), Pseudomonas aeruginosa (4.9%), Acinetobacter baumannii (4.2%) and Enterobacter cloacae (3.0%). For K. pneumoniae, antibiotic resistance was mainly prevalent in hospital-associated bloodstream infections, while for A. baumannii, antibiotic resistance was mainly prevalent in community-associated bloodstream infections. It is worth mentioning that 94.1% of the 1939 Gram-negative isolates were susceptible to polymyxin B. The sensitivity of the strains involved in our investigation to polymyxin B is highly correlated with their sensitivity to colistin. Conclusion: The surveillance results in CARVIS-NET-2021 showed that the main pathogens of GNBSI in China were Enterobacteriaceae, while E. coli was the most common pathogen. The resistance rates of K. pneumonia, P. aeruginosa, A. baumannii, and E. cloacae to multiple antibiotics kept on a high level. In many cases, polymyxin B and colistin has become the last-resort agents to combat bloodstream infections caused by multidrug-resistant (MDR) Gram-negative bacteria.

9.
BMC Microbiol ; 22(1): 234, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182895

RESUMO

BACKGROUND: Data on antibiotic resistance is essential to adapt treatment strategies against the rapidly changing reality of antimicrobial resistance. OBJECTIVE: To study the in vitro activity of ceftaroline, ceftazidime-avibactam, and comparators against Gram-positive and Gram-negative bacteria collected from China in the year 2018. METHODS: A total of 2301 clinical isolates were collected from 17 medical center laboratories in China, which participated in the ATLAS program in 2018. Antimicrobial susceptibilities were determined by the broth microdilution method at a central laboratory. Clinical and Laboratory Standards Institute (CLSI) breakpoints were used to interpret the results except for tigecycline, for which the US Food and Drug Administration (FDA) breakpoint were used. RESULTS: The susceptibility rates of methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant Streptococcus pneumoniae (PRSP), and ß-hemolytic streptococcus to ceftaroline were 83.9%, 100%, and 100%, respectively. Escherichia coli, imipenem-susceptible (IMP-S) Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, IMP-S Enterobacter cloacae, Proteus mirabilis, Morganella morganii, Serratia marcescens and Pseudomonas aeruginosa had high susceptibility rates to ceftazidime-avibactam (95.8%, 100%, 97.7%, 94.5%, 100%, 90.2%, 96.0%, 97.5% and 90.7%, respectively). However, imipenem-resistant Escherichia coli and imipenem-resistant Pseudomonas aeruginosa demonstrated low susceptibility to ceftazidime-avibactam (33.3% and 75.8%, respectively). Against MRSA, methicillin-susceptible Staphylococcus aureus (MSSA), S. pneumoniae and ß-hemolytic streptococci, the susceptibility rates of tigecycline were 93.5%, 99.2%, 100% and 100%, respectively. Levofloxacin also showed high in vitro activity against S. pneumoniae and ß-hemolytic streptococci with a susceptibility rate of 100% and 98.4%. The susceptibility rate of E. faecalis to ampicillin was 100%. Among Gram-negative isolates, tigecycline and colistin showed good activity against E. coli, K. pneumoniae, imipenem-resistant E. cloacae, C. freundii and A. baumannii (susceptibility rates and intermediate susceptibility rates of 99.3% and 96.8%, 95.4% and 94.5%, 100% and 87.5%, 96.4% and 89.3%, MIC90 of 2 mg/L and 97.4%, respectively). E. coli and E. cloacae had high susceptibility rates to imipenem and meropenem (93.0% and 92.8%, 89.8% and 92.1%, respectively). M. morganii and P. mirabilis demonstrated meropenem and piperacillin-tazobactam susceptibility rates of 96.0% and 94.0%, 94.1% and 92.2%, respectively. CONCLUSION: Ceftaroline showed good activity among tested antimicrobial agents against Gram-positive species, while ceftazidime-avibactam had good activity against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Proteus mirabilis, Morganella morganii, Serratia marcescens and Pseudomonas aeruginosa excluding carbapenem-resistant isolates.


Assuntos
Bactérias Gram-Negativas , Staphylococcus aureus Resistente à Meticilina , Ampicilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Ceftazidima , Cefalosporinas , Colistina , Combinação de Medicamentos , Escherichia coli , Bactérias Gram-Positivas , Imipenem , Klebsiella pneumoniae , Levofloxacino , Meropeném , Meticilina , Testes de Sensibilidade Microbiana , Piperacilina , Tazobactam , Tigeciclina
10.
Microbiol Spectr ; 10(5): e0084222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35993711

RESUMO

Klebsiella pneumoniae is a significant infectious pathogen that causes bloodstream infections. This study aimed to genetically characterize a novel sequence type 4523 (ST4523) multidrug-resistant (MDR) K. pneumoniae strain recovered from the blood of a 79-year-old Chinese female patient with severe pneumonia and chronic obstructive pulmonary disease who ultimately died of the infection. The susceptibility testing results showed that strain 18SHX180 is nonsusceptible to cephalosporin, carbapenems, combinations of ß-lactam and ß-lactamase inhibitors, levofloxacin, and colistin and is only susceptible to amikacin. The phylogenetic structure showed that strain 18SHX180 belongs to a novel sequence type, ST4523, and capsule serotype K111. ST4523 is closely related to ST11, the most dominant clone of clinical carbapenem-resistant K. pneumoniae in China. ST4523 has 2 single-base variants in mdh and phoE. 18SHX180 showed medium virulence in Galleria mellonella and a mouse intraperitoneal infection model. PacBio Sequel and Illumina sequencing were performed to analyze the genetic characterization of 18SHX180, which contains 2 plasmids (pSHX180-NDM5 and pSHX180-1). pSHX180-NDM5 exhibits 86% coverage and 100% identity with 3 blaNDM-5-carrying plasmids and contains an additional region coding for the frmRAB operon, which permits bacteria to sense and detoxify formaldehyde. pSHX180-1 is responsible for the MDR phenotype: it carries 11 categories of genes for antimicrobial resistance [aadA16, aph(3″)-Ib, aph(6)-Id, blaSHV-182, blaTEM-1A, qacE, aac(6')-Ib-cr, mph(A), floR, qnrB6, arr-3, sul, sul2], all of which are associated with transposons and integrons located in three accessory resistance regions. The novel ST4523 K. pneumoniae strain could threaten the control of antimicrobial resistance, and its discovery calls attention to the genetic evolution of bacteria. IMPORTANCE Klebsiella pneumoniae is a significant infectious pathogen causing bloodstream infections. Due to the dissemination of carbapenemase genes, the incidence of carbapenem-resistant K. pneumoniae (CRKP) has increased, with high morbidity and mortality rates in immunocompromised patients. Here, we reported a novel ST4523 blaNDM-5-bearing CRKP strain initially recovered from a 79-year-old female who died of both a lower respiratory tract infection and bloodstream infection. We also describe the genetic and phenotypic characteristics of this strain. This study provides important insights into the genetic evolution of ST11 K. pneumoniae.


Assuntos
Infecções por Klebsiella , Sepse , Feminino , Amicacina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Inibidores de beta-Lactamases , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Cefalosporinas , Colistina/farmacologia , Formaldeído , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Levofloxacino , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos/genética , Sepse/tratamento farmacológico , Humanos , Idoso
11.
Front Microbiol ; 13: 891807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711757

RESUMO

Objectives: We identified a novel hybrid plasmid simultaneously carrying bla NDM-1 and bla IMP-4 in an ST20-K28 carbapenem-resistant Klebsiella pneumoniae (CRKP) strain AZS099 and reported its detailed genetic and phenotypic characterization. Methods: Antimicrobial susceptibility was characterized using broth microdilution method. Complete genome characteristics and plasmid detailed analysis were carried out by PacBio Sequel and Illumina sequencing and further bioinformatics analysis. Conjugation assay, S1-PFGE, Southern blot, plasmid stability, and fitness cost were conducted to the phenotypic characterization of this novel hybrid plasmid. Results: AZS099 was isolated from a blood specimen obtained from a 3-month baby who presented with biliary tract infection. Susceptibility testing showed that AZS099 was resistant to almost all ß-lactams examined, including cephalosporins, combinations of ß-lactams and ß-lactamase inhibitors, carbapenems, and aztreonam. PacBio and Illumina sequencing together with S1-PFGE and Southern blot showed that bla NDM-1 and bla IMP-4 were simultaneously located on a 296 kb IncFIB(K)/IncHI1B/IncX3 plasmid (pAZS099-NDM-IMP), which consists of four main parts that came from four different types of plasmids. The region harboring bla IMP-4 is located in a class 1 integron designated as In0, which is located in an IS6100-IS26 transposon-like structure with a total length of ~5 kb. The region harboring bla NDM-1 is located in the Tn125 transposon remnant. Conjugation and transformation assay confirmed that the plasmid pAZS099-NDM-IMP has the potential for horizontal transfer and displayed high stability (retention rate > 95%). Furthermore, growth curve assessment confirmed that the presence of pAZS099-NDM-IMP exhibits no growth pressure on bacteria. Conclusion: Our research reported a hybrid plasmid coharboring bla NDM-1 and bla IMP-4 in an ST20-K28 CRKP strain. The emergence of novel hybrid plasmid could threaten the control of antimicrobial resistance and should be closely supervised.

12.
Emerg Microbes Infect ; 11(1): 648-661, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35086435

RESUMO

Colistin is regarded as a last-resort agent to combat infections caused by multidrug-resistant (MDR) Gram-negative bacteria, especially carbapenem-resistant isolates. In recent years, reports of colistin-resistant Klebsiella pneumoniae (CoRKp) are increasing. However, the molecular mechanism and relevance of colistin resistance and virulence remain unclear. Fourteen CoRKp strains were retrospectively screened from 1884 clinical K. pneumoniae isolates during 2017-2018 in China. Six CoRKp strains belonging to ST11 were MDR strains. Plasmid-mediated mobile colistin-resistance genes had a low prevalence in CoRKp. Our results revealed that up-regulated expression of two-component systems, especially phoPQ, contributed more to colistin resistance. mgrB mutation was the most common molecular mechanism of colistin resistance, caused by either nonsense mutations or insertion sequences, which drove the overexpression of phoPQ system. This study also identified three novel point mutations in pmrAB system, in which D313N mutation in pmrB was proved to increase the MIC to colistin by 16-fold. In addition, 6 out of 14 CoRKP strains independently carried hypervirulence genes. All six strains showed medium-to-high virulence phenotype compared with NTUH-K2044 strain in mice intraperitoneal challenge models. We found that 4 strains were biofilm strong producers and transcriptome analysis revealed that three of them significantly up-regulated expression of type III fimbrial shaft gene mrkA. In conclusion, our result revealed the emergence of colistin-resistant and hypervirulent MDR K. pneumoniae, which is a noticeable superbug and could cause a severe challenge to public health.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Klebsiella/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , beta-Lactamases/genética
13.
Front Microbiol ; 12: 795790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858384

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2021.743981.].

15.
Front Microbiol ; 12: 743981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659178

RESUMO

Objectives: The New Delhi metallo-ß-lactamase (NDM) can hydrolyze almost all clinically available ß-lactam antibiotics and has widely spread all over the world. NDM-29, a novel carbapenemase, was discovered in an Escherichia coli (19NC225) isolated from a patient with biliary tract infection in 2019 in China. Methods: Conjugation, transformation, cloning test, fitness cost, PacBio Sequel, and Illumina sequencing were performed to analyze the genetic and phenotypic characterization of bla NDM-29. Results: The susceptibility testing results showed 19NC225 was resistant to cephalosporins, carbapenems, combinations of ß-lactam and ß-lactamase inhibitors, and levofloxacin. Conjugation and transformation were performed to verify the transferability of NDM-29-encoding plasmid, and cloning test was conducted to prove the function of bla NDM-29 to increase carbapenem resistance. Furthermore, fitness cost test confirmed that the presence of NDM-29 exerts no survival pressure on bacteria. PacBio Sequel and Illumina sequencing were performed to analyze the genetic characterization of 19NC225, which contains two plasmids (pNC225-TEM1B and pNC225-NDM-29). pNC225-NDM-29, exhibiting 99.96% identity and 100% coverage with pNDM-BTR (an IncN1 plasmid from an E. coli in urine specimen from Beijing in 2013), showed responsibility for the multidrug-resistant (MDR) phenotype. Compared with bla NDM-1, bla NDM-29, located on pNC225-NDM-29, carries a G388A (D130N) mutation. The region harboring bla NDM-29 is located in an ISKpn19-based transposon, and two Tn6292 remnants are symmetrically located upstream and downstream of the transposon. The sequence results also indicated several important virulence genes. Conclusion: The findings of the novel carbapenemase NDM-29 could pose a threat to the control of antimicrobial resistance and arouse attention about the mutation of bacteria.

16.
Infect Drug Resist ; 14: 3509-3518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511942

RESUMO

PURPOSE: In recent years, less options are available for treating carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant Pseudomonas aeruginosa. The present study investigates the susceptibility rates to imipenem/relebactam for the treatment of intra-abdominal infections (IAIs), respiratory tract infections (RTIs) and urinary tract infections (UTIs) caused by A. baumannii and P. aeruginosa in China. PATIENTS AND METHODS: A total of 1886 P. aeruginosa and 1889 A. baumannii isolates were collected in 21 centers (7 regions) as a part of the global SMART surveillance program between 2015 and 2018. Antimicrobial susceptibility testing was performed according to the Clinical and Laboratory Standards Institute (CLSI) recommendations using the broth microdilution methodology at Peking Union Medical College Hospital. RESULTS: For P. aeruginosa, overall susceptibility rates to imipenem/relebactam were 84.2% at a CLSI breakpoint of ≤2 mg/L compared to 55.7% for imipenem. Susceptibility rates of imipenem-non-susceptible P. aeruginosa to imipenem/relebactam were 64.4% and for multidrug-resistance (MDR) P. aeruginosa susceptibility rates were increased from 25.2% for imipenem to 65.8% for imipenem/relebactam. The susceptibilities of imipenem-non-susceptible and MDR P. aeruginosa strains were similarly restored by imipenem/relebactam in non-ICU and ICU wards. The rate of imipenem-non-susceptibilities A. baumannii isolates was 79.0%, whereas the MDR rate was 81.9%. Relebactam did not change the susceptibilities of imipenem-non susceptible or MDR A. baumannii isolates. CONCLUSION: Imipenem/relebactam provides a therapy option to treat infections caused by MDR or imipenem-non-susceptible P. aeruginosa but not A. baumannii infections in China.

17.
Front Microbiol ; 12: 663033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305831

RESUMO

OBJECTIVE: The objective of the study was to investigate the antimicrobial susceptibility and extended-spectrum beta-lactamase (ESBL) positive rates of Escherichia coli from community-acquired urinary tract infections (CA-UTIs) in Chinese hospitals. MATERIALS AND METHODS: A total of 809 E. coli isolates from CA-UTIs in 10 hospitals (5 tertiary and 5 secondary hospitals) from different regions in China were collected during the period 2016-2017 according to the strict inclusion criteria. Antimicrobial susceptibility testing was carried out by standard broth microdilution method. Isolates were categorized as ESBL-positive, ESBL-negative, and ESBL-uncertain groups according to the CLSI recommended phenotypic screening method. ESBL and AmpC genes were amplified and sequenced on ESBL-positive and ESBL-uncertain isolates. RESULTS: The antimicrobial agents with susceptibility rates of greater than 95% included imipenem (99.9%), colistin (99.6%), ertapenem (98.9%), amikacin (98.3%), cefmetazole (97.9%), nitrofurantoin (96%), and fosfomycin (95.4%). However, susceptibilities to cephalosporins (varying from 58.6% to 74.9%) and levofloxacin (48.8%) were relatively low. In the phenotypic detection of ESBLs, ESBL-positive isolates made up 38.07% of E. coli strains isolated from CA-UTIs, while 2.97% were ESBL-uncertain. Antimicrobial susceptibilities of imipenem, cefmetazole, colistin, ertapenem, amikacin, and nitrofurantoin against ESBL-producing E. coli strains were greater than 90%. The percentage of ESBL-producing strains was higher in male (53.6%) than in female patients (35.2%) (p < 0.001). CTX-M-14 (31.8%) was the major CTX-M variant in the ESBL-producing E. coli, followed by CTX-M-55 (23.4%), CTX-M-15 (17.5%), and CTX-M-27 (13.3%). The prevalence of carbapenem-resistant E. coli among CA-UTI isolates was 0.25% (2/809). CONCLUSION: Our study indicated high prevalence of ESBL in E. coli strains from strictly defined community-acquired urinary tract infections in adults in China. Imipenem, colistin, ertapenem, amikacin, and nitrofurantoin were the most active antimicrobials against ESBL-positive E. coli isolates. bla CTX-M- 14 is the predominant esbl gene in ESBL-producing and ESBL-uncertain strains. Our study indicated that the use of cephalosporins and fluoroquinolone needs to be restricted for empirical treatment of CA-UTIs in China.

18.
Ann Transl Med ; 9(9): 769, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34268382

RESUMO

BACKGROUND: The global spread of carbapenem-resistant Enterobacterales (CRE) represents a serious public health concern as these organisms are associated with limited treatment options, high mortality rate and rapid transmissibility. The identification of carbapenemase remains a challenge in microbiological laboratories as no single method is perfect when considering cost, carbapenemase coverage, accuracy, handling complexity and TATs together. METHODS: NG-Test CARBA 5 assay and modified carbapenem inactivation method in conjunction with EDTA carbapenem inactivation method (mCIM/eCIM) were challenged with a collection of 299 molecularly characterized CRE isolates in China in order to evaluate the performance in detecting five major carbapenemases (bla KPC, bla NDM, bla VIM, bla IMP, and bla OXA-48) among Enterobacterales. RESULTS: NG-Test CARBA 5 detected all KPC-, NDM-, VIM- and OXA-48-producing isolates perfectly with a weak false-positive signal for NDM in an IMP-4 producer, which makes the specificity for NDM decreases to 99.6%. The overall specificity/sensitivity were 99.9%/100% for NG-Test CARBA 5. mCIM/eCIM achieved high specificity of 100%/100% and sensitivity of 99.6%/97.4%, with one S. marcescens isolate harboring VIM-2 undetected. CONCLUSIONS: Both NG-Test CARBA 5 and mCIM/eCIM showed excellent results in the tested carbapenemase (bla KPC, bla NDM, bla VIM, bla IMP, and bla OXA-48) detection compared with molecular genotypic test. As every assay has its own limitations, suitable methods should be combined for the establishment of the CRE diagnostic pathways.

19.
J Antimicrob Chemother ; 76(10): 2593-2599, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34215878

RESUMO

OBJECTIVES: To establish the epidemiological cut-off values (ECOFFs) for cefoselis against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Proteus mirabilis and Pseudomonas aeruginosa. METHODS: We collected 2288 non-repetitive clinical isolates from five laboratories throughout four cities in China. The cefoselis MICs and inhibition zone diameters for all isolates were established using the broth microdilution method and the disc diffusion method following EUCAST guidelines. MIC ECOFFs were determined by visual estimation and ECOFFinder software. Zone diameter ECOFFs were set if a high correlation of MICs and inhibition zone diameters was found by Pearson correlation. Zone diameter ECOFFs were finally determined by the visual estimate method. RESULTS: MICs of cefoselis were distributed from 0.008 to >256 mg/L for the four Enterobacterales species and from 0.25 to >256 mg/L for P. aeruginosa. MIC ECOFFs were 0.125 mg/L for E. coli, K. pneumoniae and P. mirabilis, 0.25 mg/L for E. cloacae and 32 mg/L for P. aeruginosa. A high correlation of MICs and zone diameters was observed for all Enterobacterales (|r| > 0.8, P < 0.001) and a relatively high correlation was found for P. aeruginosa (|r| = 0.71, P < 0.001). The zone diameter ECOFF was 24 mm for E. cloacae, E. coli and K. pneumoniae, 26 mm for P. mirabilis and 21 mm for P. aeruginosa. CONCLUSIONS: We determined MIC and zone diameter ECOFFs for cefoselis against four Enterobacterales species and P. aeruginosa. The establishment of ECOFFs for cefoselis provides clinicians with helpful guidance to differentiate WT and non-WT pathogens.


Assuntos
Escherichia coli , Klebsiella pneumoniae , Antibacterianos/farmacologia , Ceftizoxima/análogos & derivados , Enterobacter cloacae , Testes de Sensibilidade Microbiana , Proteus mirabilis , Pseudomonas aeruginosa
20.
Front Med (Lausanne) ; 8: 643194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937287

RESUMO

Purpose: The infection of carbapenem-resistant Enterobacterales (CRE) has become a major clinical and healthcare problem worldwide. The screening methods of CRE have been extensively developed but still need improving [e.g., tests with accurate and simple minimum inhibitory (MICs)]. In this study, the performance of the BD Phoenix NMIC-413 AST panel was evaluated against clinical CRE and carbapenem-susceptible Enterobacterales (CSE) in China. The panel was first evaluated in the Chinese clinical lab. Methods: Antimicrobial susceptibility testing of 303 clinical Enterobacterales isolates were conducted by broth microdilution (BMD), Phoenix NMIC-413 AST panel, and disk diffusion method for imipenem, ertapenem, and meropenem. Considering BMD is a gold standard, essential agreement (EA), categorical agreement (CA), minor error (MIE), major error (ME), and very major error (VME) were determined according to CLSI guidelines. CA and EA > 90%, ME <3%, and VME <1.5% were considered as acceptable criteria. Polymerase chain reaction and sanger sequencing were performed to determine the ß-lactamase genotypes of CRE isolates. Results: Three hundred and three isolates included 195 CREs and 108 CSEs were enrolled according to the BMD-MIC values of three carbapenems. Tested CREs showing 100 bla KPC-2-positive organisms, 31 bla IMP-positive organisms, 28 bla NDM-positive organisms, 5 bla VIM-positive organisms, 2 both bla IMP and bla VIM-positive organisms, 2 bla OXA-48-positive organisms, and 27 isolates without carbapenemase genes. For the Phoenix NMIC-413 method, CA and EA rates >93%, MIE rates <5%, ME rates <1.75%, and VME rates were 0%, across the three drugs. For the disk diffusion method, the CA rates for three drugs were all >93%, while the MIE and ME rates were all <5 and <3%, respectively. VME rate was 3.28% for imipenem, exceeded the cut-off value specified by CLSI M52, 0 and 0.56% for ertapenem and meropenem, separately. Conclusion: Based on the genomic data, the detection of CRE and CSE was more reliable using the BD Phoenix NMIC-413 panel compared to the BMD and disk approaches. Therefore, our study supports the use of BD Phoenix NMIC-413 panel as a suitable alternative to BMD for the detection of carbapenem resistant isolates in a clinical setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...